
rapa

FOXO Technologies

Nov 04, 2022

CONTENTS:

1 Robust Automated Parsimony Analysis (RAPA) 1
1.1 Getting Started . 2
1.2 Primary Features . 3
1.3 Initial Feature Filtering . 4
1.4 Automated Parsimony Analysis . 4
1.5 Visualization . 6
1.6 Additional Tutorial . 8
1.7 Plans . 8

2 API Reference 9
2.1 Classes . 9
2.2 Utility Functions . 13

3 RAPA Walkthrough 17
3.1 Overview . 17

4 Indices and tables 33

Python Module Index 35

Index 37

i

ii

CHAPTER

ONE

ROBUST AUTOMATED PARSIMONY ANALYSIS (RAPA)

rapa provides a robust, freely usable and shareable tool for creating and analyzing more accurate machine learning
(ML) models with fewer features in Python. View documentation on ReadTheDocs.

rapa is currently developed on top of DataRobot’s Python API to use DataRobot as a “model-running engine”, with
plans to include open source software such as scikit-learn, tensorflow, or pytorch in the future. Install using
pip!

• Getting Started

• Primary Features

– Initial Feature Filtering

∗ With Previous DataRobot Project

∗ Submitting a New Project With RAPA

– Automated Parsimony Analysis

1

https://life-epigenetics-rapa.readthedocs-hosted.com/en/latest/
https://github.com/FoxoTech/rapa/actions/workflows/ci.yml
https://life-epigenetics-rapa.readthedocs-hosted.com/en/latest/
https://pypi.org/project/rapa/#data
https://codecov.io/gh/FoxoTech/rapa

rapa

∗ Visualization

1.1 Getting Started

1.1.1 Installation

pip install rapa

1.1.2 Initializing the DataRobot API

Majority of rapa’s utility comes from the DataRobot auto-ML platform. To utilize DataRobot through Python, an API
key is required. Acquire an API key from app.datarobot.com after logging into an account. (More information about
DataRobot’s API keys)

First, log in and find the developer tools tab.

Then create an API key for access to the API with Python.

2 Chapter 1. Robust Automated Parsimony Analysis (RAPA)

https://docs.datarobot.com/en/docs/api/api-quickstart/api-qs.html
https://docs.datarobot.com/en/docs/api/api-quickstart/api-qs.html

rapa

This API key lets anyone who has it access your DataRobot projects, so never share it with anyone.

To avoid sharing your API accidentally by uploading a notebook to github, it is suggested to use the rapa function to
read in a pickled dictionary for the API key or using datarobot’s configuration for authentication.

Once having obtained an API key, use rapa or datarobot to initialize the API connection.

Using rapa, first create the pickled dictionary containting an API key.

DO NOT UPLOAD THIS CODE WITH THE API KEY FILLED OUT
save a pickled dictionary for datarobot api initialization in a new folder named 'data'
import os
import pickle

api_dict = {'tutorial':'APIKEYHERE'}
if 'data' in os.listdir('.'):

print('data folder already exists, skipping folder creation...')
else:

print('Creating data folder in the current directory.')
os.mkdir('data')

if 'dr-tokens.pkl' in os.listdir('data'):
print('dr-tokens.pkl already exists.')

else:
with open('data/dr-tokens.pkl', 'wb') as handle:

pickle.dump(api_dict, handle)

Then use rapa to initialize the API connection!

Use the pickled dictionary to initialize the DataRobot API
import rapa

rapa.utils.initialize_dr_api('tutorial')

rapa.utils.initialize_dr_api takes 3 arguments: token_key - the dictionary key used to store the API key
as a value, file_path - the pickled dataframe file path (default: data/dr-tokens.pkl), endpoint - and the endpoint (de-
fault:https://app.datarobot.com/api/v2).

1.2 Primary Features

Currently, rapa provides two primary features:

1. Initial feature filtering to reduce a feature list down to a size that DataRobot can receive as input.

2. Automated parsimony analysis using feature importance metrics directly tied to the feature’s impact on accurate
models (permutation importance).

1.2. Primary Features 3

https://docs.datarobot.com/en/docs/api/api-quickstart/api-qs.html#configure-api-authentication
https://life-epigenetics-rapa.readthedocs-hosted.com/en/latest/_modules/rapa/utils.html#initialize_dr_api

rapa

1.3 Initial Feature Filtering

Automated machine learning is easily applicable to samples with fewer features, as the time and resources required
reduces significantly as the number of initial features decreases. Additionally, DataRobot’s automated ML platform
only accepts projects that have up to 20,000 features per sample.

For feature selection, rapa uses sklearn’s f_classif or f_regression to reduce the number of features. This
provides an ANOVA F-statistic for each sample, which is then used to select the features with the highest F-statistics.

first, create a rapa classification object
rapa_classif = rapa.Project.Classification()

then provide the original data for feature selection
sdf = rapa_classif.create_submittable_dataframe(input_data_df=input,

target_name='target_column',
n_features=2000)

When calling create_submittable_dataframe, the provided input_data_df should have all of the features as
well as the target as columns, and samples as the index.

If the number of features is reduced, then there should be no missing values.

1.4 Automated Parsimony Analysis

To start automated parsimony analysis using Datarobot, a DataRobot project with a target and uploaded data must
already be created.

• Use an existing project

• Create a new project using rapa

1.4.1 Use a previously created DataRobot project:

To use a previously created DataRobot project, you must have access to the project with the account that provided the
API key.

• First, initialize the API connection with an API key that provides access to the project of interest.

rapa.utils.initialize_dr_api('tutorial')

• Then, provide either a project id or unique project name to rapa.utils.find_project and get a
datarobot.models.Project object for further analysis.

project = rapa.utils.find_project('PROJECT_OF_INTEREST')

4 Chapter 1. Robust Automated Parsimony Analysis (RAPA)

https://life-epigenetics-rapa.readthedocs-hosted.com/en/latest/docs/source/modules.html#rapa.utils.find_project
https://datarobot-public-api-client.readthedocs-hosted.com/en/v2.28.0/autodoc/api_reference.html#datarobot.models.Project

rapa

1.4.2 Create and submit data for a new DataRobot project using rapa:

When creating a new DataRobot project, the API key used should be from an account which the project will be created.
Additionally, the data for training will be submitted, and the target will be provided and selected with the API.

• First, initialize the API connection with an API key that provides access to the account where the project will be
created.

rapa.utils.initialize_dr_api('tutorial')

• Load the data for machine learning using pandas

load data (make sure features are columns, and samples are rows)

from sklearn import datasets # data used in this tutorial
import pandas as pd # used for easy data management

loads the dataset (as a dictionary)
breast_cancer_dataset = datasets.load_breast_cancer()

puts features and targets from the dataset into a dataframe
breast_cancer_df = pd.DataFrame(data=breast_cancer_dataset['data'], columns=breast_
→˓cancer_dataset['feature_names'])
breast_cancer_df['benign'] = breast_cancer_dataset['target']

• Create a rapa object for either classification or regression (this example is a classification problem)

Creates a rapa classifcation object
bc_classification = rapa.Project.Classification()

• Make a DataRobot submittable dataframe using create_submittable_dataframe

creates a datarobot submittable dataframe with cross validation folds stratified for␣
→˓the target (benign)
sub_df = bc_classification.create_submittable_dataframe(breast_cancer_df, target_name=
→˓'benign')

rapa’s create_submittable_dataframe takes the number of features to initially filter to.

If filtering features, either the sklearn function sklearn.feature_selection.f_classif or sklearn.
feature_selection.f_regression is used depending on the rapa instance that is called. In the case of this
example, the function is being called by a Project.Classification object, so f_classif will be used.

Additionally, create_submittable_dataframe can take a random state as an argument. When changing the random
state, the features that are filtered can sometimes change drastically. This is because the average ANOVA F score over
the cross-validation folds is calculated for selecting the features, and the random state changes which samples are in
each cross-validation fold.

• Finally, submit the ‘submittable dataframe’ to DataRobot as a project

submits a project to datarobot using our dataframe, target, and project name.
project = bc_classification.submit_datarobot_project(input_data_df=sub_df, target_name=
→˓'benign', project_name='TUTORIAL_breast_cancer')

1.4. Automated Parsimony Analysis 5

https://life-epigenetics-rapa.readthedocs-hosted.com/en/latest/docs/source/modules.html#rapa.base.RAPABase.create_submittable_dataframe
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_classif.html?highlight=f_classif#sklearn.feature_selection.f_classif
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html?highlight=f_regress#sklearn.feature_selection.f_regression
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html?highlight=f_regress#sklearn.feature_selection.f_regression

rapa

This will run DataRobot’s autopilot feature on the data submitted.

1.4.3 After obtaining a DataRobot Project

Once a DataRobot project object is loaded into Python, the parsimonious model analysis can begin.

Using an initialized rapa object (Project.Classification or Project.Regression), call the
perform_parsimony function. This function returns None.

perform parsimony on the breast-cancer classification data
use a featurelist prefix `TEST`
start with the `Informative Features` featurelist provided by datarobot
use a feature range starting with 25 features, down to 1
have 5 `lives`, so if the models do not become more accurate, it will stop feature␣
→˓reduction
try and reduce overfitting with a cross-validation average mean error limit of 0.8
graph feature performance over time, as well as model performance
bc_classification.perform_parsimony(project=project,

featurelist_prefix='TEST',
starting_featurelist_name='Informative Features',
feature_range=[25, 20, 15, 10, 5, 4, 3, 2, 1],
lives=5,
cv_average_mean_error_limit=.8,
to_graph=['feature_performance', 'models'])

While running perform_parsimony, rapa is checking job status with DataRobot. This is displayed to the user as
printed statements while running the function. Additionally, if the progress_bar argument is True, the tqdm progress
bar will display updates in text.

The perform_parsimony function takes, at minimum, a list of desired featurelist sizes (feature_range) and a
DataRobot project (project). Additional arguments allow for choosing the featurelist to begin parsimonious fea-
ture reduction (starting_featurelist), what prefix to use for rapa reduced featurelists (featurelist_prefix),
what metric to use for deciding the ‘best’ models (metric), which visuals to present (to_graph), etc. To get in-depth
descriptions of each argument, visit the documentation for perform_parsimony.

1.5 Visualization

1.5.1 Model Performance

To present to the user the trade-off between the size of Feature List and the model performance for each Feature List, a
series of boxplots can be plotted. The y-axis uses the chosen measurment of accuracy for the models (AUC, R-squared,
etc.), while the x-axis has the featurelist sizes decreasing from left to right. Choose to plot either after each feature
reduction during parsimony analysis (provide the argument to_graph=['models'] to perform_parsimony), or use
the function rapa.utils.parsimony_performance_boxplot and provide a project and the featurelist prefix used.

6 Chapter 1. Robust Automated Parsimony Analysis (RAPA)

https://life-epigenetics-rapa.readthedocs-hosted.com/en/latest/docs/source/modules.html#rapa.base.RAPABase.perform_parsimony
https://life-epigenetics-rapa.readthedocs-hosted.com/en/latest/docs/source/modules.html#rapa.base.RAPABase.perform_parsimony

rapa

rapa.utils.parsimony_performance_boxplot(project=project,
starting_featurelist='Informative Features')

1.5.2 Feature Impact Evolution

While the number of features decreases, each feature’s impact changes as well. Features which had previously had
high impact on the models with many other features may no longer have significance once more features are removed.
This suggests towards the multi-variate nature of feature impact and it’s ability to create parsimonious models. A
stackplot using height in the y-axis to represent impact provides insight into the evolution of each feature’s impact as
the number of features decreases. Choose to plot either after each feature reduction during parsimony analysis (provide
the argument to_graph=['feature_performance'] to perform_parsimony), or use the function rapa.utils.
feature_performance_stackplot and provide a project and the featurelist prefix used.

rapa.utils.feature_performance_stackplot(project=project,
starting_featurelist='Informative Features')

1.5. Visualization 7

rapa

1.6 Additional Tutorial

In addition to this readme, there is a tutorial for using rapa with DataRobot and readily available data from sklearn
that is currently demonstrated in general_tutorial.ipynb, which is also in the documentation.

1.7 Plans

Although the current implementation of these features will be based on basic techniques such as linear feature filters
and recursive feature elimination, we plan to rapidly improve these features by integrating state-of-the-art techniques
from the academic literature.

8 Chapter 1. Robust Automated Parsimony Analysis (RAPA)

https://github.com/FoxoTech/rapa/blob/main/tutorials/general_tutorial.ipynb
https://life-epigenetics-rapa.readthedocs-hosted.com/en/latest/tutorials/general_tutorial.html

CHAPTER

TWO

API REFERENCE

2.1 Classes

class rapa.Project.Classification(project: Optional[Project] = None)
Bases: RAPABase

RAPA class meant for classification problems.

class rapa.Project.Regression(project: Optional[Project] = None)
Bases: RAPABase

RAPA class meant for regression problems.

class rapa.base.RAPABase

Bases: object

The base of regression and classification RAPA analysis

POSSIBLE_TARGET_TYPES = ['ALL', 'ANOMALY', 'BINARY', 'MULTICLASS', 'MULTILABEL',
'REGRESSION', 'UNSTRUCTURED']

• _classification = None # Set by child classes

• target_type = None # Set at initialization

• project = None # Set at initialization or with ‘perform_parsimony()’

create_submittable_dataframe(input_data_df: DataFrame, target_name: str, n_features: int = 19990,
n_splits: int = 6, filter_function: Optional[Callable[[DataFrame,
ndarray], List[ndarray]]] = None, random_state: Optional[int] =
None)→ DataFrame

Prepares the input data for submission as either a regression or classification problem on DataRobot.

Creates pre-determined k-fold cross-validation splits and filters the feature set down to a size that DataRobot
can receive as input, if necessary. TODO: private function submit_datarobot_project explanation

Parameters

target_name: str
Name of the prediction target column in input_data_df.

n_features: int, optional (default: 19990)
The number of features to reduce the feature set in input_data_df down to. DataRobot’s
maximum feature set size is 20,000. If n_features has the same number of features as the
input_data_df, NaN values are allowed because no feature filtering will ocurr

9

rapa

n_splits: int, optional (default: 6)
The number of cross-validation splits to create. One of the splits will be retained as a holdout
split, so by default this function sets up the dataset for 5-fold cross-validation with a holdout.
NOTE: CV Fold 0 is the holdout set by default.

filter_function: callable, optional (default: None)
The function used to calculate the importance of each feature in the initial filtering step that
reduces the feature set down to max_features.

This filter function must take a feature matrix as the first input and the target array as the second
input, then return two separate arrays containing the feature importance of each feature and
the P-value for that correlation, in that order.

When None, the filter function is determined by child class. If an instance
of RAPAClassif(), sklearn.feature_selection.f_classif is used. If RAPARegress(),
sklearn.feature_selection.f_regression is used. See scikit-learn’s f_classif function for
an example: https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_
regression.html

random_state: int, optional (default: None)
The random number generator seed for RAPA. Use this parameter to make sure that RAPA
will give you the same results each time you run it on the same input data set with that seed.

Returns

pre-determined k-fold cross-validation splits, and was filtered down to ‘max_features’ size using
the ‘filter_function’

perform_parsimony(feature_range: List[Union[float, int]], project: Optional[Union[Project, str]] = None,
starting_featurelist_name: str = 'Informative Features', featurelist_prefix: str = 'RAPA
Reduced to', mode: str = 'auto', lives: Optional[int] = None,
cv_average_mean_error_limit: Optional[float] = None, feature_impact_metric: str =
'median', progress_bar: bool = True, to_graph: Optional[List[str]] = None, metric:
Optional[str] = None, verbose: bool = True)

Performs parsimony analysis by repetatively extracting feature importance from DataRobot models and
creating new models with reduced features (smaller feature lists). # TODO take a look at featurelist_prefix
for running multiple RAPA

NOTICE: Feature impact scores are only gathered from models that have had their cross-validation accu-
racy tested!

Parameters

or a list containing floats representing desired featurelist percentages (of the original fea-
turelist size)

project: datarobot.Project | str, optional (default = None)
Either a datarobot project, or a string of it’s id or name. If None, uses the project that was
provided to create the rapa class

starting_featurelist: str, optional (default = ‘Informative Features’)
The name or id of the featurelist that rapa will start pasimony analysis with

featurelist_prefix: str, optional (default = ‘RAPA Reduced to’)
The desired prefix for the featurelists that rapa creates in datarobot. Each featurelist will start
with the prefix, include a space, and then end with the number of features in that featurelist

10 Chapter 2. API Reference

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html

rapa

mode: str (enum), optional (default: datarobot.AUTOPILOT_MODE.FULL_AUTO)
The modeling mode to start the DataRobot project in. Options:

• datarobot.AUTOPILOT_MODE.FULL_AUTO

• datarobot.AUTOPILOT_MODE.QUICK

• datarobot.AUTOPILOT_MODE.MANUAL

• datarobot.AUTOPILOT_MODE.COMPREHENSIVE: Runs all blueprints in the reposi-
tory (warning: this may be extremely slow).

lives: int, optional (default = None)
The number of times allowed for reducing the featurelist and obtaining a worse model. By
default, ‘lives’ are off, and the entire ‘feature_range’ will be ran, but if supplied a number >=
0, then that is the number of ‘lives’ there are.

Ex: lives = 0, feature_range = [100, 90, 80, 50] RAPA finds that after making all the models
for the length 80 featurelist, the ‘best’ model was created with the length 90 featurelist, so it
stops and doesn’t make a featurelist of length 50.

Similar to datarobot’s Feature Importance Rank Ensembling for advanced
feature selection (FIRE) package’s ‘lifes’ https://www.datarobot.com/blog/
using-feature-importance-rank-ensembling-fire-for-advanced-feature-selection/

cv_average_mean_error_limit: float, optional (default = None)
The limit of cross validation mean error to help avoid overfitting. By default, the limit is off,
and the each ‘feature_range’ will be ran. Limit exists only if supplied a number >= 0.0

Ex: ‘feature_range’ = 2.5, feature_range = [100, 90, 80, 50]
RAPA finds that the average AUC for each CV fold is [.8, .6, .9, .5] respectfully, the mean
of these is 0.7. The average error is += 0.15. If 0.15 >= cv_average_mean_error_limit, the
training stops.

feature_impact_metric: str, optional (default = ‘median’)

How RAPA will decide each feature’s importance over every model in a feature list
Options: * median * mean * cumulative

progress_bar: bool, optional (default = True)
If True, a simple progres bar displaying complete and incomplete featurelists. If False, pro-
vides updates in stdout Ex: current worker count, current featurelist, etc.

to_graph: List[str], optional (default = None)

A list of keys choosing which graphs to produce. Possible Keys:

• ‘models’: seaborn boxplot with model performances with provided metric

• ‘feature_performance’: matplotlib.pyplot stackplot of feature performances

metric: str, optional (default = None)
The metric used for scoring models, when finding the ‘best’ model, and when plotting model
performance

When None, the metric is determined by what class inherits from base. For instance, a RA-
PAClassif instance’s default is ‘AUC’, and RAPARegress is ‘R Squared’

verbose: bool, optional (default = True)
If True, prints updates from DataRobot and rapa during parsimonious feature rduction

Returns

2.1. Classes 11

https://www.datarobot.com/blog/using-feature-importance-rank-ensembling-fire-for-advanced-feature-selection/
https://www.datarobot.com/blog/using-feature-importance-rank-ensembling-fire-for-advanced-feature-selection/

rapa

submit_datarobot_project(input_data_df: DataFrame, target_name: str, project_name: str, target_type:
Optional[str] = None, worker_count: int = -1, metric: Optional[str] = None,
mode: str = 'auto', random_state: Optional[int] = None)→ Project

Submits the input data to DataRobot as a new modeling project.

It is suggested to prepare the input_data_df using the ‘create_submittable_dataframe’ function first with
an instance of either RAPAClassif or RAPARegress.

Parameters

target_name: str
Name of the prediction target column in input_data_df.

project_name: str
Name of the project in DataRobot.

target_type: str (enum)
Indicator to DataRobot of whether the new modeling project should be a binary classification,
multiclass classification, or regression project.

Options:

• datarobot.TARGET_TYPE.BINARY

• datarobot.TARGET_TYPE.REGRESSION

• datarobot.TARGET_TYPE.MULTICLASS

worker_count: int, optional (default: -1)
The number of worker engines to assign to the DataRobot project. By default, -1 tells
DataRobot to use all available worker engines.

metric: str, optional (default: None)
Name of the metric to use for evaluating models. You can query the metrics available for the
target by way of Project.get_metrics. If none is specified, then the default recommended by
DataRobot is used.

mode: str (enum), optional (default: datarobot.AUTOPILOT_MODE.FULL_AUTO)
The modeling mode to start the DataRobot project in.

Options:

• datarobot.AUTOPILOT_MODE.FULL_AUTO

• datarobot.AUTOPILOT_MODE.QUICK

• datarobot.AUTOPILOT_MODE.MANUAL

• datarobot.AUTOPILOT_MODE.COMPREHENSIVE: Runs all blueprints in the repos-
itory (this may be extremely slow).

random_state: int, optional (default: None)
The random number generator seed for DataRobot. Use this parameter to make sure that
DataRobot will give you the same results each time you run it on the same input data set with
that seed.

Returns

12 Chapter 2. API Reference

rapa

2.2 Utility Functions

rapa.utils.feature_performance_stackplot(project: Project, featurelist_prefix: str = 'RAPA Reduced to',
starting_featurelist: Optional[str] = None,
feature_impact_metric: str = 'median', metric: Optional[str] =
None, vlines: bool = False)

Utilizes matplotlib.pyplot.stackplot to show feature performance during parsimony analysis.

Parameters

featurelist_prefix: str, optional (default = ‘RAPA Reduced to’)
The desired prefix for the featurelists that will be used for plotting feature performance. Each
featurelist will start with the prefix, include a space, and then end with the number of features in
that featurelist

starting_featurelist: str, optional (default = None)
The starting featurelist used for parsimony analysis. If None, only the featurelists with the desired
prefix in featurelist_prefix will be plotted

feature_impact_metric: str, optional (default = mean)
Which metric to use when finding the most representative feature importance of all models in the
featurelist

Options:

• median

• mean

• cumulative

metric: str, optional (default = ‘AUC’ or ‘RMSE’) [classification and regression]
Which metric to use when finding feature importance of each model

vlines: bool, optional (default = False)
Whether to add vertical lines at the featurelist lengths or not, False by default

Returns

rapa.utils.find_project(project: str)→ Project
Uses the DataRobot api to find a current project.

Uses datarobot.Project.get() and dr.Project.list() to test if ‘project’ is either an id or possibly a name of a project
in DataRobot, then returns the project found.

Parameters

Returns

first/only project returned by searching by project name. Returns None if the list is empty.

rapa.utils.get_best_model(project: Project, featurelist_prefix: Optional[str] = None, starred: bool = False,
metric: Optional[str] = None, fold: str = 'crossValidation', highest:
Optional[bool] = None)→ Model

Attempts to find the ‘best’ model in a datarobot by searching cross validation scores of all the models in a supplied
project. # TODO make dictionary for minimize/maximize

CURRENTLY SUPPORTS METRICS WHERE HIGHER = BETTER

2.2. Utility Functions 13

rapa

Warning: Actually finding the ‘best’ model takes more than averageing cross validation scores, and it is
suggested that the ‘best’ model is decided and starred in DataRobot. (Make sure ‘starred = True’ if starring
the ‘best’ model)

Note: Some models may not have scores for the supplied fold because they were not run. These models are
ignored by this function. Make sure all models of interest have scores for the fold being provided if those models
should be considered.

Parameters

featurelist_prefix: str, optional (default = None)
The desired featurelist prefix used to search in for models using specific rapa featurelists

starred: bool, optional (default = False)
If True, return the starred model. If there are more than one starred models, then warn the user
and return the ‘best’ one

metric: str, optional (default = ‘AUC’ or ‘RMSE’) [classification and regression]
What model metric to use when finding the ‘best’

fold: str, optional (default = ‘crossValidation’)

The fold of data used in DataRobot. Options are as follows:
[‘validation’, ‘crossValidation’, ‘holdout’, ‘training’, ‘backtestingScores’, ‘backtesting’]

highest: bool, optional (default for classification = True, default for regression = False)
Whether to take the highest value (highest = True), or the lowest value (highest = False). Change
this when assumed switch is

Returns

from the provided datarobot project

rapa.utils.get_featurelist(featurelist: str, project: Project)→ Featurelist
Uses the DataRobot api to search for a desired featurelist.

Uses datarobot.Project.get_featurelists() to retrieve all the featurelists in the project. Then, it searches the list for
id’s, and if it doesn’t find any, it searches the list again for names. Returns the first project it finds.

Parameters

project: datarobot.Project
The project that is being searched for the featurelist

Returns

rapa.utils.get_starred_model(project: Project, metric: Optional[str] = None, featurelist_prefix:
Optional[str] = None)→ Model

Alias for rapa.utils.get_best_model() but makes starred = True

rapa.utils.initialize_dr_api(token_key: Optional[str] = None, file_path: str = 'data/dr-tokens.pkl',
endpoint: str = 'https://app.datarobot.com/api/v2')

14 Chapter 2. API Reference

rapa

Initializes the DataRobot API with a pickled dictionary created by the user.

Accesses a file that should be a pickled dictionary. This dictionary has the API token as the value to the provided
token_key. Ex: {token_key: ‘API_TOKEN’}

Parameters

file_path: str, optional (default = ‘data/dr-tokens.pkl’)
Path to the pickled dictionary containing the API token

endpoint: str, optional (default = ‘https://app.datarobot.com/api/v2’)
The endpoint is usually the URL you would use to log into the DataRobot Web User Interface

rapa.utils.parsimony_performance_boxplot(project: Project, featurelist_prefix: str = 'RAPA Reduced to',
starting_featurelist: Optional[str] = None, metric:
Optional[str] = None, split: str = 'crossValidation',
featurelist_lengths: Optional[list] = None)

Uses seaborn’s boxplot function to plot featurelist size vs performance for all models that use that featurelist
prefix. There is a different boxplot for each featurelist length. # TODO warn about multiple prefixes, try to use
new prefixes

Paremeters

featurelist_prefix: str, optional (default = ‘RAPA Reduced to’)
The desired prefix for the featurelists that will be used for plotting parsimony performance. Each
featurelist will start with the prefix, include a space, and then end with the number of features in
that featurelist

starting_featurelist: str, optional (default = None)
The starting featurelist used for parsimony analysis. If None, only the featurelists with the desired
prefix in featurelist_prefix will be plotted

metric: str, optional (default = ‘AUC’ or ‘RMSE’) [classification and regression]
The metric used for plotting accuracy of models

split: str, optional (default = ‘crossValidation’)
What split’s performance to take from. Can be: [‘crossValidation’, ‘holdout’] TODO: i think it
can be more, double check

featurelist_lengths: list, optional (default = None)
A list of featurelist lengths to plot

Returns

2.2. Utility Functions 15

https://app.datarobot.com/api/v2

rapa

16 Chapter 2. API Reference

CHAPTER

THREE

RAPA WALKTHROUGH

This tutorial is meant to cover multiple RAPA use cases, including starting from scratch or using a previous DataRobot
project.

3.1 Overview

1. Initialize the DataRobot API

• Save a pickled dictionary for DataRobot API Initialization

• Use the pickled dictionary to initialize the DataRobot API

• (Optional): Skip this if the DataRobot API is previously initialized

2. Submit data as a project to DataRobot

• Create a submittable pandas dataframe

• Submit the data using RAPA

• (Optional): If parsimonious feature reduction is required on an existing project, it is possible to load the
project instead of creating a new one.

3. Perform parsimonious feature reduction

[Link to the documentation]

[1]: import rapa
print(rapa.version.__version__)

0.1.0

3.1.1 1. Initialize DataRobot the API

[2]: import pickle
import os

On the DataRobot website , find the developer tools and retrieve an API key. Once you have a key, make sure to run
the next block of code with your api key replacing the value in the dictionary. Here is a detailed article on DataRobot
API keys.

Make sure to remove code creating the pickled dataframe and the pickled dataframe itself from any public
documents, such as GitHub.

17

rapa

[3]: # save a pickled dictionary for datarobot api initialization
api_dict = {'tutorial':'APIKEYHERE'}
if 'data' in os.listdir('.'):

print('data folder already exists, skipping folder creation...')
else:

print('Creating data folder in the current directory.')
os.mkdir('data')

if 'dr-tokens.pkl' in os.listdir('data'):
print('dr-tokens.pkl already exists.')

else:
with open('data/dr-tokens.pkl', 'wb') as handle:

pickle.dump(api_dict, handle)

data folder already exists, skipping folder creation...
dr-tokens.pkl already exists.

[4]: # Use the pickled dictionary to initialize the DataRobot API
rapa.utils.initialize_dr_api('tutorial')

DataRobot API initiated with endpoint 'https://app.datarobot.com/api/v2'

The majority of this tutorial uses the DataRobot API, so if the API is not initialized, it will not run.

3.1.2 2. Submit data as a project to DataRobot

This tutorial uses the Breast cancer wisconsin (diagnostic) dataset as an easily accessible example set for rapa, as it
easily loaded with sklearn.

This breast cancer dataset has 30 features extracted from digitized images of aspirated breast mass cells. A few features
are the mean radius of the cells, the mean texture, mean perimater The target is whether the cells are from a malignant
or benign tumor, with 1 indicating benign and 0 indicating malignant. There are 357 benign and 212 malignant samples,
making 569 samples total.

[5]: from sklearn import datasets # data used in this tutorial
import pandas as pd # used for easy data management

[6]: # loads the dataset (as a dictionary)
breast_cancer_dataset = datasets.load_breast_cancer()

[7]: # puts features and targets from the dataset into a dataframe
breast_cancer_df = pd.DataFrame(data=breast_cancer_dataset['data'], columns=breast_
→˓cancer_dataset['feature_names'])
breast_cancer_df['benign'] = breast_cancer_dataset['target']
print(breast_cancer_df.shape)
breast_cancer_df.head()

(569, 31)

[7]: mean radius mean texture mean perimeter mean area mean smoothness \
0 17.99 10.38 122.80 1001.0 0.11840
1 20.57 17.77 132.90 1326.0 0.08474
2 19.69 21.25 130.00 1203.0 0.10960

(continues on next page)

18 Chapter 3. RAPA Walkthrough

rapa

(continued from previous page)

3 11.42 20.38 77.58 386.1 0.14250
4 20.29 14.34 135.10 1297.0 0.10030

mean compactness mean concavity mean concave points mean symmetry \
0 0.27760 0.3001 0.14710 0.2419
1 0.07864 0.0869 0.07017 0.1812
2 0.15990 0.1974 0.12790 0.2069
3 0.28390 0.2414 0.10520 0.2597
4 0.13280 0.1980 0.10430 0.1809

mean fractal dimension ... worst texture worst perimeter worst area \
0 0.07871 ... 17.33 184.60 2019.0
1 0.05667 ... 23.41 158.80 1956.0
2 0.05999 ... 25.53 152.50 1709.0
3 0.09744 ... 26.50 98.87 567.7
4 0.05883 ... 16.67 152.20 1575.0

worst smoothness worst compactness worst concavity worst concave points \
0 0.1622 0.6656 0.7119 0.2654
1 0.1238 0.1866 0.2416 0.1860
2 0.1444 0.4245 0.4504 0.2430
3 0.2098 0.8663 0.6869 0.2575
4 0.1374 0.2050 0.4000 0.1625

worst symmetry worst fractal dimension benign
0 0.4601 0.11890 0
1 0.2750 0.08902 0
2 0.3613 0.08758 0
3 0.6638 0.17300 0
4 0.2364 0.07678 0

[5 rows x 31 columns]

When using rapa to create a project on DataRobot, the number of features is reduced using on of the sklearn func-
tions sklearn.feature_selection.f_classif, or sklearn.feature_selection.f_regress depending on
the rapa instance that is called. In this tutorial’s case, the data is a binary classification problem, so we have to
create an instance of the Project.Classification class.

As of now, rapa only supports classification and regression problems on DataRobot. Additionally, rapa has only been
tested on tabular data.

[8]: # Creates a rapa classifcation object
bc_classification = rapa.Project.Classification()

[9]: # creates a datarobot submittable dataframe with cross validation folds stratified for␣
→˓the target (benign)
sub_df = bc_classification.create_submittable_dataframe(breast_cancer_df, target_name=
→˓'benign')
print(sub_df.shape)
sub_df.head()

(569, 32)

3.1. Overview 19

rapa

[9]: benign partition mean radius mean texture mean perimeter mean area \
0 0 CV Fold 4 17.99 10.38 122.80 1001.0
1 0 CV Fold 3 20.57 17.77 132.90 1326.0
2 0 CV Fold 1 19.69 21.25 130.00 1203.0
3 0 CV Fold 0 11.42 20.38 77.58 386.1
4 0 CV Fold 2 20.29 14.34 135.10 1297.0

mean smoothness mean compactness mean concavity mean concave points \
0 0.11840 0.27760 0.3001 0.14710
1 0.08474 0.07864 0.0869 0.07017
2 0.10960 0.15990 0.1974 0.12790
3 0.14250 0.28390 0.2414 0.10520
4 0.10030 0.13280 0.1980 0.10430

... worst radius worst texture worst perimeter worst area \
0 ... 25.38 17.33 184.60 2019.0
1 ... 24.99 23.41 158.80 1956.0
2 ... 23.57 25.53 152.50 1709.0
3 ... 14.91 26.50 98.87 567.7
4 ... 22.54 16.67 152.20 1575.0

worst smoothness worst compactness worst concavity worst concave points \
0 0.1622 0.6656 0.7119 0.2654
1 0.1238 0.1866 0.2416 0.1860
2 0.1444 0.4245 0.4504 0.2430
3 0.2098 0.8663 0.6869 0.2575
4 0.1374 0.2050 0.4000 0.1625

worst symmetry worst fractal dimension
0 0.4601 0.11890
1 0.2750 0.08902
2 0.3613 0.08758
3 0.6638 0.17300
4 0.2364 0.07678

[5 rows x 32 columns]

[10]: # submits a project to datarobot using our dataframe, target, and project name.
project = bc_classification.submit_datarobot_project(input_data_df=sub_df, target_name=
→˓'benign', project_name='TUTORIAL_breast_cancer')
project

[10]: Project(TUTORIAL_breast_cancer)

[11]: # if the project already exists, the `rapa.utils.find_project` function can be used to␣
→˓search for a project
project = rapa.utils.find_project("TUTORIAL_breast_cancer")
project

[11]: Project(TUTORIAL_breast_cancer)

20 Chapter 3. RAPA Walkthrough

rapa

3.1.3 3. Perform parsimonious feature reduction

rapa’s main function is perform_parsimony. Requiring a feature_range and a project, this function recursively
removes features by their relative feature impact scores across all models in a featurelist, creating a new featurelist and
set of models with DataRobot each iteration.

• feature_range: a list of desired featurelist lengths as integers (Ex: [25, 20, 15, 10, 5, 4, 3, 2, 1]), or of desired
featurelist sizes (Ex: [0.9, 0.7, 0.5, 0.3, 0.1]). This tells rapa how many features remain after each iteration of
feature reduction.

• project: either a datarobot project, or a string of it’s id or name. rapa.utils.find_project can be used
to find a project already existing in DataRobot, or submit_datarobot_project can be used to submit a new
project.

• featurelist_prefix: provides datarobot with a prefix that will be used for all the featurelists created by the
perform_parsimony function. If running rapa multiple times in one DataRobot project, make sure to change
the featurelist_prefix each time to avoid confusion.

• starting_featurelist_name: the name of the featurelist you would like to start parsimonious reduction from. It
defaults to ‘Informative Features’, but can be changed to any featurelist name that exists within the project.

• lives: number of times allowed for reducing the featurelist and obtaining a worse model. By default, ‘lives’ are
off, and the entire ‘feature_range’ will be ran, but if supplied a number >= 0, then that is the number of ‘lives’
there are. (Ex: lives = 0, feature_range = [100, 90, 80, 50] RAPA finds that after making all the models for the
length 80 featurelist, the ‘best’ model was created with the length 90 featurelist, so it stops and doesn’t make
a featurelist of length 50.) This is similar to DataRobot’s Feature Importance Rank Ensembling for advanced
feature selection (FIRE) package’s ‘lifes’.

• cv_average_mean_error_limit: limit of cross validation mean error to help avoid overfitting. By default, the
limit is off, and the each ‘feature_range’ will be ran. Limit exists only if supplied a number >= 0.0.

• to_graph: a list of keys choosing which graphs to produce. Current graphs are feature_performance and models.
feature_performance graphs a stackplot of feature impacts across many featurelists, showing the change in impact
over different featurelist lengths. models plots seaborn boxplots of some metric of accuracy for each featurelist
length. These plots are created after each iteration.

Additional arguments and their effects can be found in the API documentation, or within the functions.

[12]: bc_classification.perform_parsimony(project=project,
featurelist_prefix='TEST_' + str(rapa.version.__

→˓version__),
starting_featurelist_name='Informative Features',
feature_range=[25, 20, 15, 10, 5, 4, 3, 2, 1],
lives=5,
cv_average_mean_error_limit=.8,
to_graph=['feature_performance', 'models'])

---------- Informative Features (30) ----------
Informative Features: Waiting for previous jobs to complete...
Previous job(s) remaining (0))
Informative Features: Waiting for feature impact...
Feature Impact job(s) remaining (0))
Feature Impact: (105.26s)
Graphing feature performance...

3.1. Overview 21

rapa

nbsphinx-code-borderwhite
DataRobot job(s) remaining (0)
Project: TUTORIAL_breast_cancer | Featurelist Prefix: TEST_0.0.9 | Feature Range: [25,␣
→˓20, 15, 10, 5, 4, 3, 2, 1]
Feature Importance Metric: median | Model Performance Metric: AUC
Lives: 5
CV Mean Error Limit: 0.8

0%| | 0/9 [00:00<?, ?it/s]

---------- TEST_0.0.9 (25) ----------
Autopilot: 249.98s
Feature Impact job(s) remaining (0)
Feature Impact: 152.84s
Waiting for DataRobot: 10.71s

nbsphinx-code-borderwhite
Performance Stackplot: 11.99s

22 Chapter 3. RAPA Walkthrough

rapa

nbsphinx-code-borderwhite
Model Performance Boxplot: 0.94s
Checking lives: 5.58s
Lives left: 5 | Previous Model Best Score: 0.996862 | Current Best Model Score: 0.
→˓9970519999999999
Mean Error Limit: 1.10s
CV Error From the Mean: 0.005385306929239613 | CV Mean Error Limit: 0.8 | CV Model␣
→˓Performance Metric: AUC
---------- TEST_0.0.9 (20) ----------
Autopilot: 270.22s
Feature Impact job(s) remaining (0)
Feature Impact: 78.82s
Waiting for DataRobot: 10.67s

nbsphinx-code-borderwhite
Performance Stackplot: 18.91s

3.1. Overview 23

rapa

nbsphinx-code-borderwhite
Model Performance Boxplot: 1.17s
Checking lives: 11.45s
Lives left: 5 | Previous Model Best Score: 0.996862 | Current Best Model Score: 0.
→˓9970519999999999
Mean Error Limit: 1.19s
CV Error From the Mean: 0.005228428328360267 | CV Mean Error Limit: 0.8 | CV Model␣
→˓Performance Metric: AUC
---------- TEST_0.0.9 (15) ----------
Autopilot: 230.22s
Feature Impact job(s) remaining (0)
Feature Impact: 68.98s
Waiting for DataRobot: 10.58s

nbsphinx-code-borderwhite
Performance Stackplot: 25.13s

24 Chapter 3. RAPA Walkthrough

rapa

nbsphinx-code-borderwhite
Model Performance Boxplot: 1.35s
Checking lives: 16.93s
Lives left: 5 | Previous Model Best Score: 0.996862 | Current Best Model Score: 0.
→˓9970519999999999
Mean Error Limit: 1.44s
CV Error From the Mean: 0.005057377745942271 | CV Mean Error Limit: 0.8 | CV Model␣
→˓Performance Metric: AUC
---------- TEST_0.0.9 (10) ----------
Autopilot: 472.73s
Feature Impact job(s) remaining (0)
Feature Impact: 73.14s
Waiting for DataRobot: 10.95s

nbsphinx-code-borderwhite
Performance Stackplot: 33.12s

3.1. Overview 25

rapa

nbsphinx-code-borderwhite
Model Performance Boxplot: 1.70s
Current model performance: '0.997242'. Previous best model performance: '0.997242'
No change in the best model, so a life was lost.
Lives remaining: '4'
Checking lives: 23.74s
Lives left: 4 | Previous Model Best Score: 0.996862 | Current Best Model Score: 0.
→˓9970519999999999
Mean Error Limit: 1.21s
CV Error From the Mean: 0.004886720473612955 | CV Mean Error Limit: 0.8 | CV Model␣
→˓Performance Metric: AUC
---------- TEST_0.0.9 (5) ----------
Autopilot: 230.10s
Feature Impact job(s) remaining (0)
Feature Impact: 85.14s
Waiting for DataRobot: 10.64s

nbsphinx-code-borderwhite
Performance Stackplot: 36.20s

26 Chapter 3. RAPA Walkthrough

rapa

nbsphinx-code-borderwhite
Model Performance Boxplot: 2.38s
Current model performance: '0.997242'. Previous best model performance: '0.997242'
No change in the best model, so a life was lost.
Lives remaining: '3'
Checking lives: 27.89s
Lives left: 3 | Previous Model Best Score: 0.996862 | Current Best Model Score: 0.
→˓9970519999999999
Mean Error Limit: 1.43s
CV Error From the Mean: 0.009681340693827197 | CV Mean Error Limit: 0.8 | CV Model␣
→˓Performance Metric: AUC
---------- TEST_0.0.9 (4) ----------
Autopilot: 249.77s
Feature Impact job(s) remaining (0)
Feature Impact: 69.58s
Waiting for DataRobot: 10.57s

nbsphinx-code-borderwhite
Performance Stackplot: 40.44s

3.1. Overview 27

rapa

nbsphinx-code-borderwhite
Model Performance Boxplot: 2.22s
Current model performance: '0.997242'. Previous best model performance: '0.997242'
No change in the best model, so a life was lost.
Lives remaining: '2'
Checking lives: 32.98s
Lives left: 2 | Previous Model Best Score: 0.996862 | Current Best Model Score: 0.
→˓9970519999999999
Mean Error Limit: 1.81s
CV Error From the Mean: 0.00870168512405422 | CV Mean Error Limit: 0.8 | CV Model␣
→˓Performance Metric: AUC
---------- TEST_0.0.9 (3) ----------
Autopilot: 249.92s
Feature Impact job(s) remaining (0)
Feature Impact: 84.92s
Waiting for DataRobot: 10.33s

nbsphinx-code-borderwhite
Performance Stackplot: 50.59s

28 Chapter 3. RAPA Walkthrough

rapa

nbsphinx-code-borderwhite
Model Performance Boxplot: 2.77s
Current model performance: '0.997242'. Previous best model performance: '0.997242'
No change in the best model, so a life was lost.
Lives remaining: '1'
Checking lives: 40.55s
Lives left: 1 | Previous Model Best Score: 0.996862 | Current Best Model Score: 0.
→˓9970519999999999
Mean Error Limit: 1.25s
CV Error From the Mean: 0.005374831693523058 | CV Mean Error Limit: 0.8 | CV Model␣
→˓Performance Metric: AUC
---------- TEST_0.0.9 (2) ----------
Autopilot: 230.24s
Feature Impact job(s) remaining (0)
Feature Impact: 80.29s
Waiting for DataRobot: 10.61s

nbsphinx-code-borderwhite
Performance Stackplot: 54.69s

3.1. Overview 29

rapa

nbsphinx-code-borderwhite
Model Performance Boxplot: 2.78s
Current model performance: '0.997242'. Previous best model performance: '0.997242'
No change in the best model, so a life was lost.
Lives remaining: '0'
Checking lives: 43.40s
Lives left: 0 | Previous Model Best Score: 0.996862 | Current Best Model Score: 0.
→˓9970519999999999
Mean Error Limit: 1.06s
CV Error From the Mean: 0.007301264001862837 | CV Mean Error Limit: 0.8 | CV Model␣
→˓Performance Metric: AUC
---------- TEST_0.0.9 (1) ----------
Autopilot: 189.18s
Feature Impact job(s) remaining (0)
Feature Impact: 64.54s
Waiting for DataRobot: 10.16s

nbsphinx-code-borderwhite
Performance Stackplot: 57.28s

30 Chapter 3. RAPA Walkthrough

rapa

nbsphinx-code-borderwhite
Model Performance Boxplot: 2.91s
Current model performance: '0.997242'. Previous best model performance: '0.997242'
No change in the best model, so a life was lost.
Lives remaining: '-1'
Checking lives: 47.33s
Ran out of lives.
Best model: 'Model('Elastic-Net Classifier (L2 / Binomial Deviance)')'
Accuracy (AUC):'0.997242'

nbsphinx-code-borderwhite
Finished Parsimony Analysis in 4211.28s.

3.1. Overview 31

rapa

32 Chapter 3. RAPA Walkthrough

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

33

rapa

34 Chapter 4. Indices and tables

PYTHON MODULE INDEX

r
rapa.base, 9
rapa.Project, 9
rapa.utils, 13

35

rapa

36 Python Module Index

INDEX

C
Classification (class in rapa.Project), 9
create_submittable_dataframe()

(rapa.base.RAPABase method), 9

F
feature_performance_stackplot() (in module

rapa.utils), 13
find_project() (in module rapa.utils), 13

G
get_best_model() (in module rapa.utils), 13
get_featurelist() (in module rapa.utils), 14
get_starred_model() (in module rapa.utils), 14

I
initialize_dr_api() (in module rapa.utils), 14

M
module

rapa.base, 9
rapa.Project, 9
rapa.utils, 13

P
parsimony_performance_boxplot() (in module

rapa.utils), 15
perform_parsimony() (rapa.base.RAPABase method),

10
POSSIBLE_TARGET_TYPES (rapa.base.RAPABase

attribute), 9

R
rapa.base

module, 9
rapa.Project

module, 9
rapa.utils

module, 13
RAPABase (class in rapa.base), 9
Regression (class in rapa.Project), 9

S
submit_datarobot_project() (rapa.base.RAPABase

method), 11

37

	Robust Automated Parsimony Analysis (RAPA)
	Getting Started
	Installation
	Initializing the DataRobot API

	Primary Features
	Initial Feature Filtering
	Automated Parsimony Analysis
	Use a previously created DataRobot project:
	Create and submit data for a new DataRobot project using rapa:
	After obtaining a DataRobot Project

	Visualization
	Model Performance
	Feature Impact Evolution

	Additional Tutorial
	Plans

	API Reference
	Classes
	Utility Functions

	RAPA Walkthrough
	Overview
	1. Initialize DataRobot the API
	2. Submit data as a project to DataRobot
	3. Perform parsimonious feature reduction

	Indices and tables
	Python Module Index
	Index

